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The cyclic fatigue short-crack growth behaviour of Y-~'-13'-Sialons with both crystallized and 
amorphous grain-boundary phases, were investigated to determine whether crystallization 
of grain boundaries affected crack-growth behaviour under cyclic and monotonic loads. 
Micromechanisms for fatigue-crack growth in Y-:~'-13'-Sialon were examined by scanning 
electron microscopy and high-resolution electron microscopy. These results show that the 
wear debris on the fatigue fracture surfaces gave evidence of a frictional wear crack-growth 
mechanism. Comparison of fatigue short-crack growth rates for Sialon of crystallized grain- 
boundary phases with that for the amorphous grain-boundary phases indicated that 
crystallization of grain-boundary phases does not appear to affect cyclic fatigue growth 
behaviour, similar to long-crack growth behaviour. The similarity of fatigue short-crack 
growth behaviour in both the crystallized and amorphous grain boundaries sialons is 
rationalized in terms of the thin residual amorphous grain-boundary regions. 

1. Introduction 
Recently, extensive studies have concentrated on im- 
proving the high-temperature performance of silicon 
nitride-based ceramics of devitrification of the original 
amorphous grain-boundary phases to form refractory 
crystalline structures [1-81. Because the low self-dif- 
fusivity of Si3N4 does not allow densification by clas- 
sical solid-state sintering techniques, processing to 
near-theoretical density by liquid-phase sintering re- 
quires the use of sintering aids. During densification, 
these additives react with the Si3N4 particles, and 
a eutectic liquid is formed. Upon cooling, the liquid 
phase remains as amorphous and/or crystalline sec- 
ondary phases at grain boundaries and multi-grain 
junctions. These secondary phases, in particular the 
remaining amorphous phase, are known to deterior- 
ate greatly the high-temperature mechanical proper- 
ties [2]. One method of improving high-temperature 
properties is to increase the softening point of the 
amorphous phases. However, the resulting strength of 
the ceramics at high temperatures is still far below 
their room-temperature strength. Another method of 
improving the high-temperature properties is to pro- 
mote crystallization of the amorphous phases, in order 
to eliminate the softening point entirely [31. Of con- 
cern, however, is whether crystallization of grain- 
boundary phases affects room-temperature crack- 
growth behaviour under both monotonic and cyclic 
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loads, given the key role of the grain-boundary phase 
on the micromechanisms of crack growth. Cornelissen 
et al. [8] have investigated the cyclic fatigue "long"- 
crack growth and fracture toughness of silicon nitride 
ceramics sintered with selected rare-earth oxides. 
These results indicated that crystallization of constitu- 
ent grain-boundary phases to improve high-temper- 
ature properties does not appear to degrade room- 
temperature toughness and fatigue-crack growth 
resistance. However, the effect of crystallization of the 
grain-boundary phase on ambient temperature 
"short" fatigue crack-growth behaviour, to our know- 
ledge, has not been made for this class of material. The 
principal interest in the present study was the effect of 
crystallization of the grain-boundary phase in Y-~'-fY- 
Sialon on room-temperature Vickers' indentation fa- 
tigue short-crack growth behaviour. 

2. Experimental procedure 
2.1. Materials 
The starting powders used were Si3N4 (laboratory 
made, N > 38 wt %, O_~ 1.5 wt %, a-phase > 90 %), 
A1N (laboratory made, N > 32.5 wt %, O ~_ 1.5 wt %), 
A1302 ( > 99.95 wt%), Y203 ( > 99.9 wt %). The mix- 
tures of powders were milled in absolute alcohol for 
24 h in an alumina jar, using sintered silicon nitride 
grinding media. After the powder mixtures were dried, 
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they were die-pressed into bars under 20 MPa and 
then isostically pressed under a pressure of 250 MPa. 
Pressed compacts were placed in covered graphite 
crucible with a protective powder bed of 90 wt % 
Si3N4 + 10 wt % BN, and then sintered at 1950~ 
under 1.5 atm nitrogen pressure for 2 h in a gas- 
pressure sintering furnace. Some of the samples were 
heat treated for 24 h in 1250 ~ so that the amorphous 
grain-boundary phase could crystallize. Flexural 
strength was measured in four-point bending in air at 
room temperature (650 MPa) and fracture toughness 
measurements were performed on the polished surfa- 
ces of the fatigue specimens using indentation tech- 
niques (8,5 MPa ml/2). No change in mechanical 
properties after heat treatment was found. 

2.2. Microstructural observations 
Phase analysis was done by X-ray diffractometry 
(XRD) using a Rigaku model RAX-10 rotating anode 
set-up. Microstructural observations were investi- 
gated under high-resolution electron microscopy 
(HREM), a Jeol 200CX equipped with a top-entry 
double-tilt goniometer. To prepare the samples for 
HREM, 0.5 mm thin slices were cut by a high-speed 
diamond saw from the sintered body. One side of each 
slice was ground and polished to a mirror surface at 
first, then the other side was ground and polished 
down to about 100 ~m, and finally carefully polished 
to about 30 pm. The resultant film was then ion- 
thinned with an argon dual-beam to perforation. In 
order to avoid surface charging under the high-volt- 
age electron beam, all samples were coated with a thin 
evaporated carbon film before observation under the 
electron microscope. 

2.3. Fatigue testing 
Bar specimens, 40 mm x 4 mm x 3 mm, were ma- 
chined from the as-received plate and polished to 1 gm 
diamond surface finish. Initial surface cracks were 
introduced on the inner span of the tensile side of the 
specimen, using a Vicker's diamond indentor at load 
of 98 N. The initial cracks were approximately semi- 
circular in shape (c/a = 0.97) and about 200 gm long. 
These indents were carefully aligned so that corner 
cracks emanating from the indents were all parallel or 
perpendicular to the long axis of the specimen. 

A four-point bending configuration with an inner 
span of 10 mm and an outer span of 30 mm was used 
in this study. Cyclic bending fatigue tests were conduc- 
ted using a commercial servohydraulic machine oper- 
ated under load control, with a sinusoidal wave form 
at a frequency of 5 Hz and load ratio, R (min- 
imum/maximum loads) of 0.1. The surface crack 
length was measured by a travelling microscope at 
a magnification of x120. Following completion of the 
fatigue-crack growth tests, the fracture surfaces and 
crack profiles were examined in a scanning electron 
microscope (SEM). Both fatigue and monotonic frac- 
ture regions of fracture surfaces were examined to 
provide some indication of the micromechanism of 
crack advance. 

2.4. Data processing 
Fatigue-crack growth rates were determined over the 
range 10-1~ -6 m cycle- t from crack length versus 
number of cycles curves. Far-field stress intensity fac- 
tors were computed from linear-elastic solutions [5] 
in terms of crack depth, a, half crack length, c, speci- 
men thickness and width, b and t, geometric factors, 
0 and Q, and remote bending stress, cy 

Kappa = Hcy(rca/Q)l/2f(a/c, a/t, a/b, O) (1) 

where H is the bending multiplier and f i s  a geometric 
function. To consider the effect of residual stress in- 
duced by indentation, an additional stress intensity 
factor, Kr from the residual crack-opening stress was 
calculated in terms of indentation load, P, and the half 
crack length, c, by [6] 

K r = z P c  - 3 / 2  (2) 

where the prefactor Z is a material constant, depend- 
ing on elastic modulus and microhardness. The total 
(effective) stress intensity factor at crack tip is therefore 
given by the summation of Equations 1 and 2. The 
slope of a straight line fitted to the log-log plots of 
growth rate  (da/dN) versus the total stress intensity 
factor range, AK, data allowed determination of the 
exponent m and C in the Paris power-law relation- 
ship [13 

da/dN = C(AK)" (3) 

3. Results and discussion 
3.1. General microstructural features 
The X-ray diffraction analysis of the sample indicates 
the phase compositions of the sample after gas-pres- 
sure sintering contain a'-Sialon (37 vol %) and [Y-Sia- 
lon (63 vol %) as the two major crystalline phases with 
some grain-boundary phases, Fig. 1 shows a scanning 
electron micrograph of the multiphase Sialon. It can 
be seen that c(-Sialon grains are generally equiaxed in 
shape; [3'-Sialon grains show a whisker-like morpho- 
logy and the aspect ratio can reach 8-10. 

Fig. 2 shows a high-resolution image of a grain 
boundary between ~'-Sialon and c(-Sialon. One of the 
a'-Sialon grains was viewed along the (1 0 3) plane, 
while another ~'-Sialon grain was viewed along the 
(3 2 5) plane. There are some glassy grain boundaries 
between them. The width of the grain boundary is 
rather thick. For comparison, the structure of the 
post-heat-treated Sialon is shown in Fig. 3. From this 
figure, a very small glassy phase between a'-Sialon and 
a'-Sialon after heat treatment can be seen. Also, Fig. 4 
shows a high-resolution image of triple grain bound- 
aries between c(-Sialon, ~'-Sialon and a crystallized 
grain boundary. It shows some residual amorphous 
phases between triple points and SiMon grains still 
exist even though heat treatment has been carried out. 

3.2. Crack-growth behaviour 
The graph in Fig. 5 shows the relationship between 
the crack-growth rate, da/dN, and the total stress 
intensity range, AK, for Y-c(-[Y-Sialon with 
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Figure 3 A high-resolution image of a grain boundary between ~'- 
Sialon viewed along the (1 0 3) plane and c~'-Sialon viewed along the 
(5 1 2) plane after heat treatment showing a very small glassy grain 
boundary between them. 

Figure l A scanning electron micrograph of the multiphase SiMon 
showing equiaxed ~'-Sialon grains and whisker-like 13'-Sialon 
grains. 

with very higher Paris power exponent, m [1 4]. As 
can also been seen from this figure, the room-temper- 
ature fatigue resistance of Sialon with crystallized 
grain-boundary phases is comparable to that of Sialon 
with amorphous grain-boundary phases, because the 
Paris power exponent in both cases is almost equal. 
This similarity in crack-growth behaviour may be due 
to thin residual amorphous grain-boundary regions at 
the interfaces between adjacent SiMon grains and be- 
tween the crystallized grain-boundary phases and 
matrix grains (Fig. 3). Because these interfaces are the 
preferred stable and fast fracture paths, the immediate 
crack-tip environment, and more importantly, the 
formation of a grain-bridging zone, may not be affec- 
ted significantly by crystallization of grain-boundary 
phases at triple points [7]. 

Figure 2 A high-resolution image of a grain boundary between 
~'-Sialon viewed along the (1 0 3) plane and ~' Sialon viewed along 
the (3 2 5) plane showing glassy grain boundary, G, between them. 

amorphous phases under a cyclic frequency of 5 Hz 
and load ratio of 0.1 compared to that for crystallized 
grain boundary. Curves of this form were obtained 
from five to nine specimens tested. Fatigue-crack 
growth curves for more ductile metallic materials of- 
ten exhibit three distinct regions, i.e. near-threshold, 
mid-, and high-growth rate regimes, but no such re- 
gions could be distinguished for the present study. 
Linear fits to the log-log plots of all data yielded 28 
and 29 for the exponent m in Paris' power law for 
Sialons with the crystallized and amorphous phases, 
respectively. This is consistent with long-crack results 

3.3. Crack -g rowth  m e c h a n i s m s  
The scanning electron micrographs in Fig. 6 show the 
fatigue-crack growth and monotonic fracture surfaces 
of Sialon with crystallized grain-boundary phases. Re- 
gion A is the fatigue-crack growth region with inter- 
granular fracture of 0~'-Sialon grains and Region B is 
the monotonic fracture region with transgranular 
fracture of ~'-Sialon grains. However, the fracture of 
[Y-Sialon grains is primarily intergranular in both 
cases. Whisker-like ]3'-Sialon grains and evidence of 
pull-out of lY-Sialon grains are clearly visible. Note 
also that the resulting fatigue fracture surfaces re- 
vealed extensive wear debris generated during repeat- 
ed opening and closing of the crack. The debris was 
identified as the grain-boundary phase produced at 
triple points after crystallization [8]. Such wear debris 
provides evidence for a frictional wear mechanism for 
fatigue-crack growth [4]. The marked increase in de- 
bris apparently results from crystallization of the 
grain-boundary triple points which produces a phase 
more prone to microcracking and wear degradation 
compared to the amorphous grain-boundary phase 
[4, 8]. Also, observations of crack propagation reveal 
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Figure 4 A high-resolution image of triple grain boundaries between c~'-Sialon, :z'-Sialon and crystallized grain-boundary phase (Y4Si2OTNz) 
after heat treatment showing some residual amorphous phases between triple points and Sialon grains. 
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Figure 5 The relationship between the crack-growth rate, da/dN, 
and the total stress intensity range, AK for Y-c~'-13'-Sialon with ( I )  
crystallized and (0)  amorphous grain-boundary phases under a 
cyclic frequency of 5 Hz and load ratio of 0.1. For amorphous 
phase, da/dN=3.96xlO 28 (AK)29; for crystallized phase, 
da/dN = 3.56 x 10 -2~ (AK) 28, (f; [3' = 37; 63 vol%. 

the occurrence of whisker-like [Y-SiMon bridging be- 
hind the crack tip (Fig. 7). Owing to the extremely 
limited crack-tip plasticity in Si3N,-based ceramics, 
other non-linear elastic processes, such as frictional 
sliding of crack-wake bridges behind the crack tip, 
have been identified as sources for fatigue degradation 
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Figure 6 Scanning electron micrograph of the fatigue region A and 
fast fracture region B of Sialon with crystallized grain-boundary 
phases. Note that a marked increase of wear debris was apparent on 
the fatigue region. 



both crystallized and amorphous grain-boundary 
phases, the following conclusions can be drawn. 

1. Fatigue-crack growth rates exhibit a power-law 
dependency on the effective stress intensity factor of 
the crack tip, with a high crack-growth exponent, 
similar to behaviour in other ceramic materials. 
Crack-growth rates for Sialon with crystallized grain- 
boundary phases were found to be comparable to that 
of Sialon with amorphous grain-boundary phases. 
The crystallization of the grain-boundary phase does 
not appear to affect ambient temperature fatigue 
short-crack growth behaviour. 

2. Scanning electron microscopy of fatigue and fast 
fracture surfaces showed that the fatigue-crack growth 
region is intergranular fracture of r grains and 
the monotonic fracture region is transgranular frac- 
ture of r grains. However, the fracture of [3'- 
Sialon grains is intergranular in both cases. Debris 
indicative of a frictional wear fatigue short-crack 
growth mechanism was also observed. Micromechan- 
isms of cyclic fatigue-crack growth are reasoned to be 
the wear degradation of frictional whisker-like [3'- 
Sialon grain bridges. 

Figure 7 Scanning electron micrograph of the fatigue-crack propa- 
gation showing the occurrence of whisker-like 13'-Sialon bridging 
behind the crack tip. 
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[7, 8]. In particular, the repetitive opening and closing 
of the crack results in a decrease in the toughening 
capacity of the bridging zone by reducing the grain- 
bridging stress, i.e. accumulated damage and reduced 
frictional sliding resistance from progressive wear at 
the grain/matrix interface causes a significantly re- 
duced frictional pull-out stress under cyclic compared 
to monotonic loading [7]. In Y-r made of 
equiaxed r grains and whisker-like [3'-Sialon, 
bridging of crack faces by whisker-like [3'-Sialon 
grains can shield the crack tip from the applied stress 
intensity and reduce the stress intensity experienced 
by the crack tip from the applied value to an effective 
one. 
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